Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Microbiol ; 80(9): 306, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501023

RESUMO

Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC-MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.


Assuntos
Coix , Epichloe , Coix/microbiologia , Epichloe/genética
2.
Can J Microbiol ; 69(8): 296-308, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084415

RESUMO

Using endophytic fungal elicitors to increase the accumulation of valuable secondary metabolites in plant tissue culture is an effective biotechnology strategy. In this study, a collection of 56 strains of endophytic fungi were isolated from different organs of cultivated Panax ginseng, of which seven strains can be symbiotically co-cultured with the hairy roots of P. ginseng. Further experiments observed that strain 3R-2, identified as endophytic fungus Schizophyllum commune, can not only infect hairy roots but also promote the accumulation of specific ginsenosides. This was further verified because S. commune colonization significantly affected the overall metabolic profile of ginseng hairy roots. By comparing the effects of S. commune mycelia and its mycelia extract (EM) on ginsenoside production in P. ginseng hairy roots, the EM was confirmed to be a relatively better stimulus elicitor. Additionally, the introduction of EM elicitor can significantly enhance the expressions of key enzyme genes of pgHMGR, pgSS, pgSE, and pgSD involved in the biosynthetic pathway of ginsenosides, which was deemed the most relevant factor for promoting ginsenosides production during the elicitation period. In conclusion, this study is the first to show that the EM of endophytic fungus S. commune can be considered as an effective endophytic fungal elicitor for increasing the biosynthesis of ginsenosides in hairy root cultures of P. ginseng.


Assuntos
Ginsenosídeos , Panax , Schizophyllum , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Panax/genética , Panax/metabolismo , Panax/microbiologia , Schizophyllum/genética , Schizophyllum/metabolismo , Técnicas de Cocultura , Raízes de Plantas
3.
Biosci Biotechnol Biochem ; 86(8): 1049-1059, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675224

RESUMO

Salvia miltiorrhiza Bunge. is commonly used to treat vascular diseases because of its activity ingredients, phenolic acids, and tanshinones. Polysaccharide fraction (PSF) extracted from Trichoderma atroviride D16 could promote tanshinone accumulation in S. miltiorrhiza hairy roots. Transcriptome sequencing was conducted to describe the global gene expression of PSF-treatment hairy roots, and data analyses showed enzymes of tanshinone biosynthetic pathways were up-regulated, and genes associated to signal molecules and transcription factors were responsive. Endogenous H2O2, abscisic acid, and nitric oxide contents were measured after PSF treatment, while tanshinone accumulations were measured with treatment of exogenous H2O2 or H2O2 inhibitor on PSF-treatment S. miltiorrhiza hairy roots. The results showed H2O2 was important in tanshinone biosynthesis caused by PSF and nitric oxide might be the downstream molecules of H2O2. Taken together, the study indicates that D16 PSF enhances the accumulation of tanshinones through enzymes of tanshinone biosynthetic pathways, signal molecules, and transcription factors.


Assuntos
Salvia miltiorrhiza , Abietanos , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Hypocreales , Óxido Nítrico/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcriptoma
4.
J Pharm Pharmacol ; 74(7): 1017-1026, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353176

RESUMO

OBJECTIVE: Xanthohumol (XAN), a natural isoflavone from Humulus lupulus L., possesses biological activities on relieving oxidative stress and osteoporosis (OP). This study aimed to evaluate the antioxidative and osteoprotective effect of XAN on Aß-injured osteoblasts, and explore its underlying mechanism. METHODS: Osteoblasts were pretreated with XAN followed by stimulation with Aß1-42. Cell proliferation, ALP activity, bone mineralization and bone formation index were measured. Apoptosis and reactive oxygen species (ROS) were analysed with flow cytometer. PI3K inhibitor LY294002 or siRNA-Nrf2 was added and transfected in osteoblasts, to further confirm whether the pathway participated in the regulation of XAN-induced cytoprotection. KEY FINDINGS: XAN markedly improved the proliferation, differentiation and mineralization of Aß-injured osteoblasts. Additionally, XAN reduced cell apoptosis rate and ROS level, and increased the expression of p-AKT, Nrf2, NQO1, HO-1 and SOD-2. More importantly, LY294002 or siNrf2 abolished the beneficial effect of XAN on osteoblasts activity and decreased the PI3K expression and inhibited its downstream proteins, indicating XAN activated PI3K/AKT/Nrf2 pathway in Aß-injured osteoblasts. CONCLUSION: It was the first time to reveal the antioxidative and osteoprotective effect of XAN through regulating PI3K/AKT/Nrf2 pathway in Aß-injured osteoblasts, which provides reference for the clinical application of XAN in the prevention and treatment of OP.


Assuntos
Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Apoptose , Flavonoides , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Propiofenonas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Ethnopharmacol ; 285: 114692, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742864

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Depression, one of the most common psychiatric disorders, is the fourth leading cause of long-term disability worldwide. A series of causes triggered depression, including psychological stress and conflict, as well as biological derangement, among which stress has a pivotal role in the development of depression. Traditional herbal medicine has been used for the treatment of various disorders including depression for a long history with multi-targets, multi-levels and multi-ways, attracting great attention from scholars. Recently, natural products have been commercialized as antidepressants which have become increasingly popular in the world health drug markets. Major research contributions in ethnopharmacology have generated and updated vast amount of data associated with natural products in antidepressant-like activity. AIMS OF THE REVIEW: This review aims to briefly discuss the pathological mechanism, animal models of stress-induced depression, traditional use of herbal medicines and especially recapitulate the natural products with antidepressant activity and their pharmacological functions and mechanism of action, which may contribute to a better understanding of potential therapeutic effects of natural products and the development of promising drugs with high efficacy and low toxicity for the treatment of stress-induced depression. MATERIALS AND METHODS: The contents of this review were sourced from electronic databases including PubMed, Sci Finder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wan Fang, Chinese Scientific and Technological Periodical Database (VIP) and Chinese Biomedical Database (CBM). Additional information was collected from Yao Zhi website (https://db.yaozh.com/). Data were obtained from April 1992 to June 2021. Only English language was applied to the search. The search terms were 'stress-induced depression', 'pathological mechanism' in the title and 'stress', 'depression', 'animal model' and 'natural products' in the whole text. RESULTS: Stress-induced depression is related to the monoaminergic system, hypothalamic-pituitary-adrenal (HPA) axis, neuronal plasticity and a series of inflammatory factors. Four main types of animal models of stress-induced depression were represented. Fifty-eight bioactive phytochemical compounds, fifty-six herb medicines and five formulas from traditional Chinese medicine were highlighted, which exert antidepressant effects by inhibiting monoamine oxidase (MAO) reaction, alleviating dysfunction of the HPA axis and nerve injury, and possessing anti-inflammatory activities. CONCLUSIONS: Natural products provide a large number of compounds with antidepressant-like effects, and their therapeutic impacts has been highlighted for a long time. This review summarized the pathological mechanism and animal models of stress-induced depression, and the natural products with antidepressant activity in particular, which will shed light on the action mechanism and clinical potential of these compounds. Natural products also have been a vital and promising source for future antidepressant drug discovery.


Assuntos
Antidepressivos/farmacologia , Produtos Biológicos/farmacologia , Depressão , Fitoterapia/métodos , Plantas Medicinais/classificação , Estresse Psicológico/complicações , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/imunologia , Depressão/metabolismo , Descoberta de Drogas , Humanos , Medicina Tradicional Chinesa/métodos
6.
J Ethnopharmacol ; 257: 112873, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32298753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea cubeba (Lour.) Pers. has been traditionally used as a folk prescription for treating rheumatic diseases in China. AIM OF THE STUDY: This study aimed to investigate the effects and underlying mechanism of LCA, a new type of dibenzyl butane lignin compound extracted from L. cubeba, on macrophage colony stimulating factor (M-CSF) plus receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in mouse-derived bone marrow macrophages (BMMs). MATERIAL AND METHODS: TRAP staining, TRAP enzyme activity assay and actin ring staining were applied to identify the effects of LCA on osteoclast differentiation. Protein expression of NFATc1, c-Fos and MMP-9, and phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-induced osteoclasts was determined using western blotting to investigate the underlying mechanism. RESULTS: LCA significantly suppressed RANKL-induced osteoclast differentiation by inhibiting TRAP activity, decreasing the number of TRAP+ multinuclear osteoclasts and reducing the formation of F-actin ring without obvious cytotoxicity in BMMs. Moreover, LCA treatment strongly reduced protein expression of NFATc1, c-Fos and MMP-9, and attenuated the phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-stimulated BMMs. CONCLUSIONS: LCA ameliorated RANKL-induced osteoclast differentiation via inhibition of Akt and MAPK signalings in BMMs, and may serve as a potential pro-drug for bone destruction prevention.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Lignina/farmacologia , Litsea , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/farmacologia , Animais , Células Cultivadas , Fêmur/citologia , Lignina/isolamento & purificação , Litsea/química , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/enzimologia , Extratos Vegetais/isolamento & purificação , Transdução de Sinais , Tíbia/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA